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1 Introduction

Research Objective Design and build methods for time-sequential anomaly detection

Traditional Approaches:

-

o

 Mechanics Methods

 Traditional data mining methods

~

J

Research Objectives:

4 A

\_

* Mining useful information

* Anomaly Detection

from time-sequential wind
dancing signal

/

Proposed:

’.

\J

A Benchmark contains sequential token data

Integrate time-domain and frequency-
domain feature to 2D fusion feature

Batch Normalization with Sliding-Window
Preprocessing (BNSWP)

CNN classifier and RNN predictor /




2 Wind Dancing Monitoring System

Asynchronous read

DN - Data- ~| 7]
Wind Dancing Monitoring Data > Sensor — I
ind Dancing Monitoring Data ——— —  ° | Write base |
Simultaneously display | 1 Read |
the wavefpr; vy ;

Real-time Display Anomaly

Module :
Detection

System




3 Benchmark Dataset

Original wind dancing signal of a month:
{sample,, sample,, ..., sample;, ... }

‘ Framing

Framed time-sequential tokens:
{token,: {sample,, ..., sample,} ... itoken;: {sample,, ..., sample,}, ...}

“~Consists of n samples within frame;

‘ Split len(frame;) = 50s
60s/minx60min/hourx24hour/day
Remaining Part s Abnormal Labeling 50s/frame 1728{rames/day

1. Relatively large dancing amplitude
(empirical observation + box-plot statistics)

2. Has low frequency harmonics:
CorTr; > COTTyp

corr; = max PearsonCorrealtion(FFT (token;); FFT (token_anomaly,))
k=K . FFT-transformation of

1<k=<
— cg
/ COTTtp = 0.65 \ ng of K abnormal| tokel

normal abnormal

tokens tokens /10 r=065 }
label: 0 label: 1 / E
. =)
(933120 tokens) (42660 tokens) 50 2
| , , , , , , , . oo oi e o5 o8 10
Benchmark Dataset 0 200 400 600 800 1000 1200 1400 1600 frequency

frame index (within 24 hours)



4 Feature Engineering

Overview of Feature Engineering

Frequency-Domain Feature

éﬂ'e Data |
Fusion Augmentation

’—>

Feature

Extraction
S

Original Training Set

Time-Domain Feature



4 Feature Engineering

Frequency-Domain Feature

FFT Transform of Certain Token Chromatogram Changes as Token Varies
B
- A
= Normal 46
<
- 3
0,'0 0?2 Ojfrequencofﬁ 0.'8 1?0 D
Y C
0 token index
Fg J —_—
%_ ] Corr vs Chromatogram
< [ ' : ' : ) 1.0 1 Corr =0.65
0.0 0.2 O.frequenc§6 0.8 1.0 - Abnormal o | /
"§ ] 0 : ) : ) 1000 1200 1400 1600
% | _ 1.0
=
<
O,IO 0.'2 06 O.'B l:O 0.8 1
frequency
0 1000 1200 1400 1600

Chromatogram Reference:
D. P. W. Ellis, G. E. Poliner. Identifyingcover songs‘ with chroma

features and dynamic programming beat tracking[C]. Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on. IEEE, 2007, 4: IV-1429-1V-1432

NOmMmOX>w



4 Feature Engineering

Time-Domain Feature

Stepl: Calculate statistical values
timeMax; = max{abs(sample;), sample; € token,}

timeMaxMin; = max{sample; € token,}- min{samplej € tokeni}

timeMean; = mean{abs(sample;), sample; € token;}
timBStdi = Std{gamplej = tokenl-} std: standard deviation

timeRMS; = RMS{Samplej € tokeni} = sqrt(mean{samplejz,samplej € tokeni})
Step2: Batch Normalization with Sliding-Window Preprocessing (BNSWP)

Input: Values of x over a sliding-window: SW = {x; ,};
Size of sliding-window m =r — [ + 1;
Fori<m-1:1=0, r=m-—-1;

l=i—m—_1, r:i+m—_1; when m is odd

Else: o 2
[ = i—;+ 1, r =i+;;whenmiseven

Parameters to be learned: y4, ;1
Output: {y; = SWP,. s (x)}

AN x. .
X; < —+ 1 // normalize
max{x;}
SW

Yi < Y1X% + p1 =SWPy, p (%) // scale and shift

Algorithm 1: Sliding-Window
Preprocess, applied to x = fea;
(e.g.timeMax;) over a sliding-
window in time-ordered training
set.

Note: m 1s decided by the
length of sliding-window, we
choose 24 hours as the sliding-
window’s length, so m = 1728
tokens,




4 Feature Engineering

Time-Domain Feature

Step2: Batch Normalization with Sliding-Window Preprocessing (BNSWP)

Input: Values of x over a mini-batch B = {x; ,,};
Parameters to be learned: y,, 3,

Output: {z; = BN, 5 (v;) = BN,z (SWP,. 5 (x;))}

Input: Network N with trainable parameters O;
subset of shuffled inputs {x}
Output: BNSWP network for inference, Niewp
1: Ng\swp < N // Training BNSWP network
2: Add z = BNSWP,,_ 5 .. 5 (x) to Ngyswp (Alg. 2)
3: Train Ngyswp to optimize © U {y1, B1,V2, B2}
4: Ni¥ e < NS swp // Inference BNSWP network
// with frozen parameters
5: Process multiple training sliding-window SW,

each of size m, and average over them:
L —+1
E[maxcgw{x ]}]
ye<vixX+py
6: Process multiple training mini-batches B, each of
size n, average over B; replace... // see original BN

X «

Algorithm 2: Batch Normalization
with  Sliding-Window  Preprocess
(BNSWP), applied to x over a mini-
batch in shuffled training set.

Algorithm 3: Training a BNSWP
Network



4 Feature Engineering

Feature Fusion Data Augmentation

label A label A label A

Time-Domain Feature

with BNSWP image A basic data patchA ml);ce: | trining
(256 x 256) augmentation (224 x 224) (22anx ) network

>
] mixing
Feature/Fusion Cused |
label B label B \
o
. —/
Chromatogram os6x256) || augmentation [ | 224 224 .
_ _ N
timeMax - Chroma } [ ]
timeMaxMin - Chroma
O =| timeMean - Chroma T Reference: H. Inoue. Data Augmentation by Pairing Samples for
timeStd - Chroma Transformation Images Classification[J]. arXiv preprint arXiv:1801.02929, 2018
timeRMS - Chroma

Fusion Feature 1 | timeMax- FFT | normal abnormal e Fxtract normal abnormal
(5 rows 12 COlS) timeMaxMin- FFT tokens tokens + Fusion tOkenS tOkenS
O =|timeMean- FFT label: 0 label:1/ """ \label:0 label: 1
timeStd - FFT 21:1 ‘ 3:1
933 12? tokens 42660 tokens 933 12q tokens 298620 tokens
timeRMS - FFT Y J Y J
Fusion Feature 2 Benchmark Dataset Augmented Feature-set 1 or 2

(5 rows 50 cols) Set-1 with Fusion-1, Set-2 with Fusion-2



5 Time-Sequential Detection and Prediction

Detection: CNN Classiftier
CNN Classifier for Feature-set 1 (Fusion 1)

Convolutional Layer

Feature Map
Input
Conv-Kernel Size | Stride | Padding | Output Channels \
5%5 1 2 128
Conv-Layer 1
3x3 1 1 128
Pool-Layer 1 2X2 2 0 128
Conv-Layer 2 3x3 1 1 256 i
Pool-Layer 2 2%2 2 0 256 Coml Poall com2 Pool2
Reshape
. Fully Connected Layer
0
1x768 -' l Model 1 Model 2
Model 1 Model 2 Model 3 - .
FC-Layer 2 2 units 256 units | 512 units
Model 3
FC-Layer 3 -- 2 units 256 units
FC-Layer 4 -- - 2 units
FC4

\—-_’.' e

III




CNN Classifier for Feature-set 1 (Fusion 1)

5 Time-Sequential Detection and Prediction
Detection: CNN Classifier

——EXxperiments

Train 1. Regularization: L2 Norm + Early Stop + Dropout; 2. Threshold: 0.5
1.000 - e A A AN AN 1.00 4 B 3 esem—— Eap—
—Accuracy Varies with Epoch (Model 1) Accuracy Varies with Epoch (Model 3)
0.975 s o (Convl: 5*5
0.950 (Conv1: 3*3) 0.96 - wAM M AW
0.925 - —— Validating Accuracy o9ad | —— validating Accuracy
—— Training Accuracy 2 ‘\ Training Accuracy
0 25 50 75 100 125 150 175 200 092 0 25 50 75 100 125 150 175 200
epoch epoch
1.0 4 — e ——— 1.0 4 N S
o m\““ ¥ mall Varics with Epoch (Model l) ol A ‘ “Recall Varies with Epoch’ (Model 3)
= 21 AN nvl: 5*
- w W SRS =1 (W "' b b f >)
0.7 l‘l LA ltq M r‘ [ '( Aﬂ ’\/ ,‘A \ /\ l“ \ N"'"'h‘l rll “"NL \‘AII'VIlIAl y.’v/ . [ LEEE U \‘V"N""“A"I"l‘ W ) 1 ‘W \hn V [ ‘. | Mufia .‘l,!*v‘n"‘ '| N \ A\
| |=p= Va“datlng Accuracy V L/ ” R w | H 0.7 —— Validating Accuracy | | W vy ‘,M“I | Iy "\‘ \/
o6dl== Training Accuracy ' » ‘ -~ Training Accuracy h \!
T . T T T T T T T T 0.6 - T T T T T T T T
0 25 50 75 oo 125 150 175 200 0 25 50 5 joo 125 150 175 200
€poc epoc
1.00:} e A e e N T T 1Si Enoch | A Recall | Precisi
_i—Accuracy Varies with Epoch (Model 2) Test Convl Size poc ceuracy ca reeson
0.95 (Convl: 5*5) s 17 94.39% 82.3% 94.11%
0.90 Sy 7 18 92.63% | 85.9% | 9236%
ossl , , , , e Model 1 20 | 9431% | 82.8% | 94.04%
0 25 50 75 100 125 150 175 200 5%x5
epoch 21 94.17% 83.3% 93.91%
1.0 P e e
- r‘ k Recall Varies with Epoch (Model 2) 22 91.65% 88.5% | 91.49%
.9 4 %
I W .,3. i (?OHVI 5% ) | Model 2 155 25 92.94% | 85.4% | 92.66%
0.8 | ‘ i '/V I 'Nwm ""V\n' | ﬂl ﬂp /’\ V\ [ fﬂ w\ '»ﬂ \ '\V‘% |,
074|— Vahdatmg Accuracy ‘l' \) f \ K/\ “’ ﬁ VYN W 16 90.26% 94.3% 90.5%
—— Training Accuracy ‘ ’ Model 3 5%X5
061 — — - . . ; . . , 26 94.27% 84.9% 94.05%
0 25 50 75 100 125 150 175 200
epoch

Note: 1. Recall and Precision for Anomaly; 2. Threshold: 0.5



5 Time-Sequential Detection and Prediction

Detection: CNN Classiftier
CNN Classifier for Feature-set 2 (Fusion 2)

Model Experiment

1. Regularization in Training: L2 Norm + Dropout

Conv-Kernel Size Stride Paddin Output Channels
£ P 2. Threshold: 0.5
Conv-Layer 1 5x5 1 2 128 Accuracy Varies with Epoch (Train)  Loss Varies with Epoch (Train)
1.00 3
Pool-Layer 1 2x2 2 0 128
099 30
Conv-Layer 2 5%X5 1 2 256 25
0.98
Pool-Layer 2 2x%x2 2 0 256 o &
15
Conv-Layer 3 3%x3 1 1 512 056 .
Pool-Layer 3 2x2 2 0 512 095 51\
FC-Layer 1 1024 units 094 , L, , : . , ,
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
FC-L 2 512 unit . . .. . .
ayet U Acc/Recall Varies with Epoch (Test) Precision Varies with Epoch (Test)
FC-Layer 3 2 units e ARSI = (for Anomaly)
09 0.64
Output of Pool 3 -> Reshape to 1x1536 -> Input of FC 1 “ | 062
07 ‘ \ 1! ah | 11 0.60
N 18 i
06 1 AL FAVINUL | 0.58
| Y I
| | | ' 1 3
05 T | I | Y| ‘ 056
04 —— Accuracy in All 0.54
—— Accuracy in Abnormal
03 —— Accuracy in Normal 0.52

Py 0 80 100 0 20 a0 60 80 100
epocﬁ epoch



5 Time-Sequential Detection and Prediction
Detection: CNN Classifier

Comparison with other models

Feature-set 2  Feature—set 2 Feature-set 2 Feature—set 1

Test Accurac 90.28% 93.98% 91.67% 96% ~98%
84.90% 66.67% 70.31% 85%~90%
89.92% 93.06% 90.35% 90%~95%

1. Training
epochs about

SVM Kernel:
. SAGA 10 to 30
Other Instructions .. 2nd Order
Optimizer ) 2. 3or4 fully
Polynomial Kernel
connected
layers

CNN Classifier with Feature-set 2 as inputs has a better classification
effect comparing with other models



5 Time-Sequential Detection and Prediction

Prediction: RNN Predictor
Model

Output

Hidden
Layer

____________________________

Input

seeds,

' token,
e R e -

token,

— ® © © mmm)y

Probability

Sigmoid i

t

N 128

Neurons

Reshape
Fusion
Feature
2to
1x250

token, .,

|
len(token; ,) < sliding-window length m in BNSWP
Usually equals to 72 (frames), equivalent to 1 hour

Experiment
Training Stride Test Test Test
Data Accuracy | Recall | Precision
1 month 1 92.36% 73.2% 64.11%
Model data 5 630 . ) 460
1 (origin) 3 92.63% 76.9% 62.46%
1.5 month 1 91.50% 78.8% 60.49%
Model data 1049 49 5 670
2 (augmented) 3 91.94% 73.4% 62.67%
2 month 1 89.26% 74.3% 61.52%
Model data 5 470 . 4050
3 (augmented) 3 92.42% 77.9% 64.05%
Note:

1. For training data: Origin as original feature-set 2,

and Augmented as augmented (both for positive and

negative samples) feature-set 2

2. len(seeds) = seg_ len =n =72

3. Threshold: 0.5

4. Test Recall and Precision for Anomaly




5 Time-Sequential Detection and Prediction

Combine Classification and Prediction in Online Inference

Combining result of CNN classifier

and RNN predictor ‘i i
09 D> — s

Future Work: Ensemble Learning: 1 0.1 o i
--------------------------------------- Sigmoid

W1 Xp1 + W Xp; 1
wy, W, to be learned, and joint training to update
Feature Map T T T T

w1 Uw, UOBcyy U Bpyy

Input [ A \ ]

-
& b1

12 12 o
g —l —) ® © © )y —
8- ° °

6 6 £ . ' : .
ij 2| Sigmoid
3
5 5 2 ) 1
1 128 128 256 256
Convl Pooll Conv2 Pool2 1

Since RNN model perform well in test recall for anomaly and is
suitable for sequential inputs, we decided to combine result of

CNN classification and RNN prediction in online inference.



6 Conclusion and Future Work
Conclusion

Build a benchmark which contains sequential token data for training and
evaluating models for wind dancing signal anomaly detection.

Combine time-domain and frequency-domain feature to 2D-feature so that
models such as CNN can be used. Propose Batch Normalization with
Sliding-Window Preprocessing (BNSWP) method for normalization.

Design and train CNN model with 2D fusion feature as inputs for anomaly
classification and RNN model for prediction. Experiments show that CNN
model performed well both in test recall and precision comparing with
other models and RNN performed well in test recall. Combine result of
CNN and RNN together when 1n inference.

Innovation
BNSWP: Add time-sequential information when normalizing.

Data Fusion (1D->2D): Combine time-domain and frequency-domain
information, build 2D time-sequential feature.

Combine Classification and Prediction: Use both CNN and RNN model for
anomaly detection and prediction, take advantages of both CNN and RNN.



6 Conclusion and Future Work

Discussion

* i

Future Work







