
Ship Identification: Ship Detection of Images by SSD with Dehazing

Xiaonan Wang Research Project at UESTC 2017.12

(Reorganized and Translated in 2023.04)

Data

Images with Large Ships

Images with Small Ships

Using Dark Channel Prior

Reference: Single image haze removal using dark channel prior, K He et al., CVPR 2009.

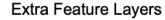
Data Augmentation

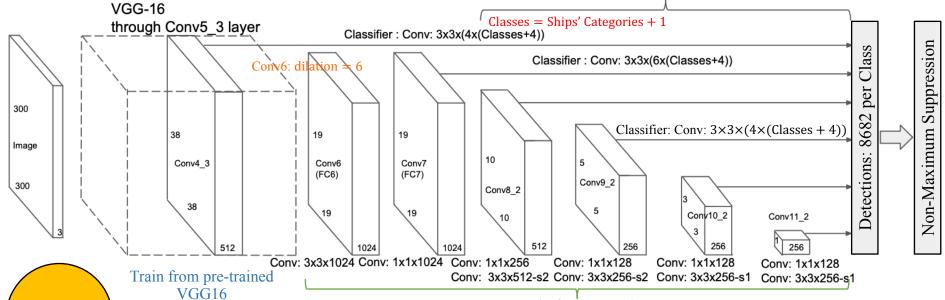
Patch Sampling, then possibly:

- Horizontally Flip
- Photo-metric Distortions

Image Clustering

Kmeans(k=4)




Positive Augmentation:

Augmented images are only used for <u>increasing</u> positive default boxes, all negative boxes from these images are <u>discarded</u>.

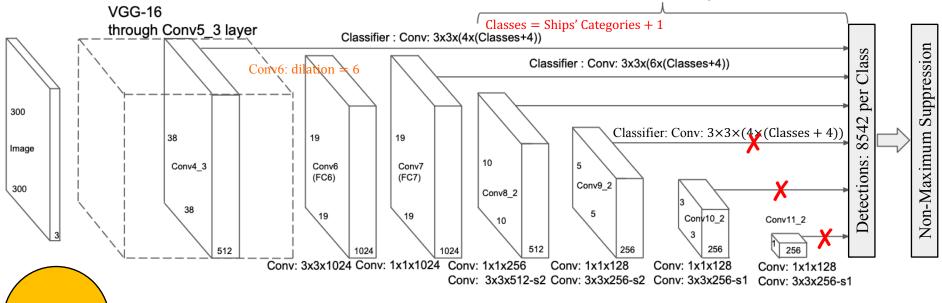
Model

Settings

, ~	Aspect Ratios		For Detection?	Supplements	
Conv4_3		$a_r \in \{1, 2, \frac{1}{2}, 1'\}$	Yes		
	Conv7	$a_r \in \{1,2,3,\frac{1}{2},\frac{1}{3},1'\}$	Yes	For 1', use $s'_k = \sqrt{s_k s_{k+1}}$	
	Conv8_2	$a_r \in \{1,2,3,\frac{1}{2},\frac{1}{3},1'\}$	Yes		
	Conv9_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	Yes	Use aspect ratios more similar to ships' aspect	
	Conv10_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	Yes		
	Conv11_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	Yes	rations	

Train from Scratch

Training Data
Augmentation


- Patch Sampling, then possibly:
 - Horizontally Flip
 - Photo-metric Distortions
- Random Expansion

Negative Sampling

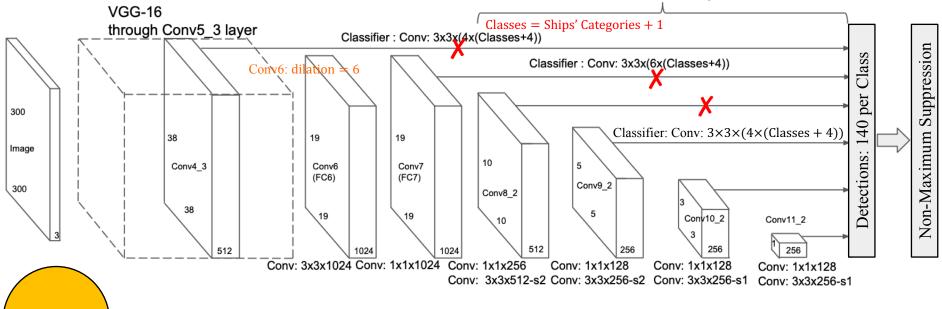
Hard Negative Mining

Model

Step 2: Fine-tune on Small Ships Set (Dense Sampling) Extra Feature Layers

Catting as				
Settings	5	Aspect Ratios	For Detection?	
	Conv4_3	$a_r \in \{1, 2, \frac{1}{2}, 1'\}$	Yes	
	Conv7	$a_r \in \{1,2,3,\frac{1}{2},\frac{1}{3},1'\}$	Yes	
	Conv8_2	$a_r \in \{1,2,3,\frac{1}{2},\frac{1}{3},1'\}$	Yes	
	Conv9_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	No	
	Conv10_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	No	
	Conv11_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	No	

Training Data
Augmentation


- Patch Sampling, then possibly:
 - Horizontally Flip
 - Photo-metric Distortions
- Image Clustering (Pos Aug)-

Negative Sampling.

- Hard Negative Mining (non clusterings)
- Discard all Negative Default Boxes (clusteirng)

Model

Step 3: Fine-tune on Large Ships Set (Sparse Sampling) Extra Feature Layers

Catting				
Settings		Aspect Ratios	For Detection?	
	Conv4_3	$a_r \in \{1, 2, \frac{1}{2}, 1'\}$	No	
	Conv7	$a_r \in \{1,2,3,\frac{1}{2},\frac{1}{3},1'\}$	No	
	Conv8_2	$a_r \in \{1,2,3,\frac{1}{2},\frac{1}{3},1'\}$	No	
	Conv9_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	Yes	
	Conv10_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	Yes	
	Conv11_2	$a_r \in \{2,4,\frac{1}{2},\frac{1}{4}\}$	Yes	

- Patch Sampling, then possibly:
 - Horizontally Flip
 - Photo-metric Distortions
- Image Clustering (Pos Aug)-

Negative Sampling.

- Hard Negative Mining (non clusterings)
- Discard all Negative Default Boxes (clusteirng)

Innovation and Discussion

Improvements and Innovations

- In Data Augmentation:
 - Image clustering for positive augmentation
- In Model Structure:
 - Change aspect ratios of default boxes at layers (locations near output) which are responsible for large scale detection more similar to ships' aspect ratios.
- In Training Strategies:
 - 3 Stages: Train + Fine-tune on Small Ships Set (Dense Sampling) + Fine-tune on Large Ships Set (Sparse Sampling)
 - We use layers near input to produce predictions in the stage of fine-tuning on small ships set (stage 2), because there is no need to update parameters of layers for large items detection when training for small items detection.
 - In the same way, we use layers near output to produce predictions in the stage of fine-tuning on large ships set (stage 3).

Discussions and To Improve

- More effective data augmentation for improving effect of small ships detection
 - eg. Format ship to relative "big" goal
- More effective data augmentation to introduce randomness
- More effective negative sampling